SQL:
INTERSECT
VS

INNER JOIN

flexyourdata.com youtube.com/@flexyourdata linkedin.com/in/owenhprice

Consider these two tables of employees

SELECT *
FROM #Employeesl;

first_name last name
1 Guy Gilbert
Z ¢ Kevin Brown
3 | Roberto Tamburello
4 : Rob Walters
5 | Rob Walters
6 : Thierry D’'Hers
7 i Dawid Bradley
& | Dawvid Bradley
9 : Jolynn NULL
10 | Ruth Ellerbrock

SELECT *
FROM #Employees2;

forename surname
1 ¢ Thierry D'Hers
2 : David Bradley
3 ¢ David Bradley
4 : JoLynn NULL
5 ¢ Ruth Ellerbrock
6 : Gall Erickson
/7 ¢ Barry Johnson
8 | Jossef Goldberg
9 : Tern Dufty
10 : Sidney Higa

flexyourdata.com youtube.com/@flexyourdata

linkedin.com/in/owenhprice

We want to find which employees are in both
tables

SELECT *
FROM #Employeesl;

SELECT *
FROM #Employees2;

first_name last_name foremame surname
1 ¢ Guy Gilbert 1 : Thierry D'Hers
Z | Kevin Brown Z | David Bradley
3 : Roberio Tamburello 3 ¢ Dawvid Bradley
4 Rob Walters 4 | Jolynn NULL
5 | Rob Walters 5 | Ruth Ellerbrock
6 | Thierry D'Hers 6 : Gal Erickson
7 Dawnd Bradley /7 i Barry Johnson
& | Dawvid Bradley 8 i lossef Goldberg
9 : Jolynn NULL 9 : Tern Duffy

10 : Ruth Ellerbrock 10 : Sidney Higa

flexyourdata.com youtube.com/@flexyourdata linkedin.com/in/owenhprice

INTERSECT finds the distinct intersection of

two sets

We use the
INTERSECT
operator between
two queries. The
queries are
evaluated and the
result-sets are
compared

Duplicates are
not returned

flexyourdata.com youtube.com/@flexyourdata

SELECT first _name, last name

FROM #Employeesl

INTERSECT

SELECT forename, surname

FROM #Employees2;

Column order and
column count are
important, but the
column names don't
need to be the same,
they must only return
compatible data types

The column names from the query

left of (above) the INTERSECT

operator are used in the result set

first_ name last_ name
1 . Dawvid Bradley
Z | Jolynn NULL
3 Ruth Ellerbrock
4 : Thierry D'Hers

NULL
comparisons
are respected

linkedin.com/in/owenhprice

INNER JOIN will also return rows present in

both sets

We can return as

many columns as we
need, not just those ON
being compared

SELECT *

FROM #Employeesl el
INNER JOIN #Employees2 e2

el.first _name = e2.forename

AND el.last name

If we SELECT *, columns from both

sides of the join are returned

eZ.surname;

Column name
differences are
accounted for in the
JOIN predicates

NULL comparisons are
respected - they are not returned

first_name last_ name forename surname

1 ¢ Thierry D'Hers Thierry D'Hers EaCh HTatChls.
5 | o BE" _— _— returned - so in

o i o SO case of duplicates,
3 David Bradley BET Bradley each row in one
4 David Bradley David Bradley table is duplicated

by the number of

5 ¢ David Bradley David Bradley matches in the
6 = Ruth Ellerbrock Ruth Ellerbrock other

flexyourdata.com youtube.com/@flexyourdata linkedin.com/in/owenhprice

We can rectify the duplicates with explicit
changes to the SELECT clause

List columns
explicitly and add
SELECT DISTINCT el.first name, el.last name the DISTINCT

FROM #Employeesl el keywo rd
INNER JOIN #Employees2 e2
ON el.first _name = e2.forename

AND el.last name = e2.surname;

first_name last_name
7 David Bradley NULL comparisons are still
c i S respected - they are not returned
3 | Thierry D'Hers

flexyourdata.com youtube.com/@flexyourdata linkedin.com/in/owenhprice

To ensure NULL values are returned, we can
modify the JOIN predicate

SELECT DISTINCT el.first name, el.last name Use COALESCE to

FROM #Employeesl el
INNER JOIN #Employees2 e2

evaluate to the first
non-null parameter.

ON el.first _name = e2.forename ; ;
AND COALESCE(el.last name,'') = COALESCE(e2.surname,''); IN this case, if the

column is NULL,
use an empty string
instead.

first_name last_name
1 ¢ Dawid Bradley
2 | Jolynn NULL
3 : Ruth Ellerbrock
4 : Thierry D'Hers

flexyourdata.com

Because an empty string is a
value (whereas NULL is not), the
comparison is valid in a join
predicate, so the row with the
NULL last_name is returned

youtube.com/@flexyourdata linkedin.com/in/owenhprice

INTERSECT vs INNER JOIN

INTERSECT INNER JOIN

Returns rows which are in both tables

Respects NULL values by default

Column order is flexible
Column count is flexible

Removes duplicates by default

flexyourdata.com youtube.com/@flexyourdata linkedin.com/in/owenhprice

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

